If it's not what You are looking for type in the equation solver your own equation and let us solve it.
s^2+8s=15
We move all terms to the left:
s^2+8s-(15)=0
a = 1; b = 8; c = -15;
Δ = b2-4ac
Δ = 82-4·1·(-15)
Δ = 124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{124}=\sqrt{4*31}=\sqrt{4}*\sqrt{31}=2\sqrt{31}$$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{31}}{2*1}=\frac{-8-2\sqrt{31}}{2} $$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{31}}{2*1}=\frac{-8+2\sqrt{31}}{2} $
| -7x-8=-15 | | 4b-19=b+3b-2b,b | | 5c-c-6c+(-15c)=-17 | | 9p^2=-63p | | 4(3^(5-x))=32 | | 2(w+1)+1=9 | | 3x+11+2x-10=180 | | .666x-7=9 | | -2/r=2 | | 21/3x=340 | | 19x-7=13x-19 | | 1-6p+8p=3p-7 | | 6u+u+2u=18 | | 3/x^2=8x/9 | | 1x+14/13=12/13x | | 52+4n=140n= | | 4x+32=8x-7 | | 4(g+3)+3=19 | | 9x^2-21x+9=-9 | | 6z+5/4=7z+7/4 | | 3y2+6y+9=0 | | 0.75+0.15(20)=0.5(x+20) | | 16w-12w-(-8)=-16 | | 6•y+4=y-11 | | 65+3n=335n= | | -3(n+8)+(-9)=-3 | | -3(4x=3)=4(6x+1)=43 | | 40+1/3x+(x-10)+(x-20)=350 | | 6k-3k-3=15 | | 8=1-g | | 2c+2c-c-3=12 | | 4(g+20)-(-16)=16 |